RFLSI ZW激光散斑血流成像系统基于LSCI(laser speckle contrast imaging)技术设计,具有非侵入性、高帧率、高分辨率的优势,用于实时监测和记录暴露组织器官的血流灌注情况。精准量化微循环血流量,满足广泛的科研场景。
建立具有简便、可靠、重复性好、稳定性高的大脑中动脉远端阻塞模型,有利于脑缺血病理生理学的研究,也可以利用该模型对各种预防、治疗脑缺血的方法和药物进行评价。本次介绍的大脑中动脉远端阻塞模型是利用双极电凝或者手术缝线将大鼠(或小鼠)的大脑中动脉主干进行电灼或结扎以阻断其供血。该模型具有脑梗面积及部位重复性好、物存活率高、梗死体积相对较小等优点,能较好地模拟临床卒中特点。
传统的微循环研究方法主要有“管腔分布走行及超微形态学观察”、“通透性评估”、“血管运动及调节”、“细胞培养法”等, 这些检测方式多为“离体静态检测”和“离体动态检测”。但是,目前离体检测存在一些缺点:离体状态的生理环境和各项指标会与活体状态有较大差距。样本通常需要处死并解剖,无法完成良好的自身对照控制个体间的差异。操作较为繁琐,降低实验效率。
脑缺血性血管病(I CVD)约占全部脑血管病的80%。具有高发病率、高致残率、高死亡率的特点,是严重危害人类健康的疾病之一。由于临床研究的种种限制,脑缺血动物模型已成为研究脑血管病损伤机制和防治措施不可缺少的工具。因此,建立最接近人类脑缺血的理想动物模型,具有重要意义。
大脑的能量供应依赖其丰富而密集的血管系统。大脑的血管系统与其它器官不一样,它由神经血管单元(Neurovascular Unit,NVU)组成,而NVU由多种血管细胞(如内皮细胞、周细胞、平滑肌细胞、血管周围巨噬细胞)和大脑细胞(如星型胶质细胞、神经元)组成。
类淋巴系统紊乱可能导致致病蛋白在大脑中的累积,这与多种脑部损伤和神经退行性疾病的发病机制密切相关。