共找到 38 条信息

2019年,瑞沃德第一代激光散斑血流成像系统RFLSI上市。上市初,瑞沃德激光散斑血流成像系统采用业界最高的参数指标,同时依托光学成像、精密传动、精确控温和微弱信号检测方面的技术背景,让其在分辨率、灵敏度、稳定性等方面有着独特的优势。2020年,瑞沃德更新了第二代激光散斑血流成像系统RFLSI Ⅲ,不仅延续了上一代产品出色的分辨率及灵敏度,在成像面积、图像算法、分析功能上又做了进一步的优化。

本文介绍模拟慢性脑血流低灌注所致病理生理改变及认知障碍的啮齿类动物模型,包括大鼠双侧颈总动脉结扎和小鼠双侧颈总动脉狭窄模型。该模型可造成脱髓鞘改变、轴突丢失、胶质细胞增生等白质损伤的病理改变。

传统的微循环研究方法主要有“管腔分布走行及超微形态学观察”、“通透性评估”、“血管运动及调节”、“细胞培养法”等, 这些检测方式多为“离体静态检测”和“离体动态检测”。但是,目前离体检测存在一些缺点:离体状态的生理环境和各项指标会与活体状态有较大差距。样本通常需要处死并解剖,无法完成良好的自身对照控制个体间的差异。操作较为繁琐,降低实验效率。

生物和医学研究设计是在生物、医学和涉及人类其他类型研究中进行实验以及观察性研究的表述。一个好的实验设计能有效提高研究水平,节省科研人员的精力及时间。那如何才能完成一个优秀的生物和医学研究设计?来跟杨国源教授学!设计范例+研究经验+理论方法,帮你打造设计方法论,快速开展科研。

自2019年产品上市以来,瑞沃德激光散斑血流成像系统已被斯坦福大学、耶鲁大学、曼彻斯特大学、杜克大学、伦敦大学学院、塔斯马尼亚大学、首尔大学、埃森大学、首都医科大学、浙江大学、四川大学等全球200余所院校和研究机构采用 ,在 Nature Neuroscience、Gut、Brain、Blood、Circulation Research、Nano Today、Nature Communications、Advanced Function Materials 和 Diabetes 等杂志上发表了 200 多

大脑的能量供应依赖其丰富而密集的血管系统。大脑的血管系统与其它器官不一样,它由神经血管单元(Neurovascular Unit,NVU)组成,而NVU由多种血管细胞(如内皮细胞、周细胞、平滑肌细胞、血管周围巨噬细胞)和大脑细胞(如星型胶质细胞、神经元)组成。

MCAO线栓手术属于显微操作手术,不可控因素较多,需要多练习。一般常规连续练习3个月左右,即可实现造模;如果采用血流仪辅助造模,时间可以缩短至1个月,手术过程中可以实时调整线栓位置。另外现在发文越来越需要漂亮数据,瑞沃德的激光散斑血流仪RFLSI Ⅲ可提供高清漂亮血管血流分布图。

研究结果展示了在激光散斑对比成像(LSCI)引导下对微集群在体内外复杂血液环境中进行高对比度成像和导航的潜力。这些发现为改进有针对性的血管内给药提供了机会。

2022年度瑞沃德“大成学堂 | 卒中研究系列讲座”已连续开播三场直播课程,涵盖卒中机制探索、模型搭建、治疗等多个方面,同时直播间互动满满,大家纷纷表示获益良多!今天,我们推送半个月三场直播的回放,想了解卒中研究热点、难点的朋友们,在回放中都可找到相应的答案。

瑞沃德线栓MCAO造模线上课程圆满结束!此次课程,学员们学习热情高涨,在直播过程中提出了很多问题。这些问题,我们会逐期为大家解答。

前往
在生命科学、动物健康和临床医疗领域提供可信赖的解决方案和服务,全力帮助客户取得成功