共找到 74 条信息

瑞沃德《肿瘤类疾病研究手术与造模手册大全》囊括了常见的肿瘤类疾病研究领域的动物模型构建的方法,具体内容包括相关疾病的研究背景、模型制备的介绍以及参考文献,为您提供更多的动物模型参考和更适合的精准模型选择,提高实验结果的可比性和重复性,助益您的科研进程。

拉制玻璃微电极时,你是否总是问题重重,需要拉制电阻稳定的玻璃微电极,调试麻烦还不稳定?,注射针总是太软,尖端过脆而导致注射失败?新手入门,有没有可以直接用的模板,不用自己调参数?

不需要,可以在注射完病毒后,直接植入光纤插针,分开操作反而给动物带来二次伤害。而且二次手术之间定位其实会存在一定误差,使用一次手术进行操作的话,会减少对应的误差,并减少一定伤害。

小胶质细胞与神经退行性病变有关,它可以通过吞噬作用清除损伤因子,对神经元起到保护作用,但是过度的吞噬则可能导致病理性的改变,目前尚不清楚机体是如何在保持小胶质细胞的有益作用的同时阻断其有害的影响。

R820三色光纤记录系统,可记录GCaMP、dLight等绿色荧光指示剂或递质探针,及RCaMP、jrGECO1a等红色指示剂或递质探针信号,同时特有的410nm光源用于获取对照信号,有效排除噪声。灵活的TTL信号输入输出设置,更方便拓展实验应用。

人类的大脑拥有约900亿个神经元,神经元之间通过突触相互连接形成了复杂的神经网络,并由此产生各种复杂的功能。大脑能够合成和释放上百种神经递质,神经信号通过突触释放的神经递质从而在神经元之间进行传递。本文将带领大家了解一些光纤记录的实验应用场景,帮助各位更好地了解光纤记录在神经系统疾病中的应用,以及分享光纤记录如何助力研究新发现。

文章概述轴突再生和神经功能恢复在老年人群中极为有限。因此,老年人的神经系统损伤通常会导致严重且长期的残疾。衰老能够引起细胞信号传导的广泛变化,包括代谢、免疫和整体组织稳态的变化,在神经系统生理学和对损伤的反应中发挥了关键作用。目前,我们对衰老依赖的再生失败的分子机制的理解仍然很差,严重阻碍了神经修复疗法的发展,因此,迫切需要确定老化导致再生失败的关键分子和细胞机制。2022年5月13日,英国帝国理

该研究首次揭示了一种新型的能够快速调节食欲的神经元——BNC2神经元。这一发现不仅为瘦素调控食欲和代谢的新模型提供了有力证据,也重新定义了大脑中饥饿与饱足的“阴阳”调节机制,为未来肥胖和代谢疾病的治疗提供了潜在的新靶点。

为了更好地助力中国脑科学研究,同时为科研工作者提供更优质的服务,作为生命科学行业的龙头企业,深圳市瑞沃德生命科技有限公司扎根神经科学领域20年,现已自主研发出全国首个技术领先、应用场景丰富的神经环路信号检测调控解决方案。由集成化光遗传设备、双色多通道光纤记录设备以及新型电极拉制仪等配套组成。

星形胶质细胞能够支持整个中枢神经系统神经元的功能。在灰质中,它们的作用包括调节发育过程中突触的数量、清除突触释放的神经递质、控制细胞外钾浓度、调节血流、为神经元供能等。在白质中,有髓鞘轴突的结构使得灰质区域之间信息能够快速传递。

前往
在生命科学、动物健康和临床医疗领域提供可信赖的解决方案和服务,全力帮助客户取得成功