共找到 38 条信息

大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)模型的制作已经成熟,但对活体成功模型的评判标准尚欠客观,目前国内对活体大鼠模型成功与否的评价仍无明确客观的标准,多以大鼠麻醉清醒后出现插栓对侧前肢不能前伸、运动旋转追尾等表现评价,具有一定的主观性。能否利用客观可行的方法提高对模型成功与否评价的客观性?

蛛网膜下腔出血以后,脑脊液里的红细胞erythrocytes是被脑膜淋巴排出的,并以此缓解了神经炎症反应。脑膜淋巴管对于蛛网膜下腔出血后的神经功能会起到保护性的作用。对于脑内淋巴循环相关的研究正在日趋增长,这个过去被认为是不存在的结构随着越来越多的研究,正显现出更大的价值。

L型CaV1.2通道在细胞兴奋、增殖、基因表达和肌肉收缩中起关键作用。CaV1.2通道的一个基本特性是它们内在的功能耦合能力,例如“合作门控”(cooperative gating)。CaV1.2的这种协同作用导致Ca2+内流放大,这种门控模式能够调节癌细胞、心肌细胞、神经元和动脉肌细胞的功能。在动脉肌细胞中,大约50%的Ca2+内流依赖于CaV1.2的合作门控,这对于动脉功能至关重要,因为Ca2+通过CaV1.2流入,将膜电位的变化与动脉肌细胞收缩耦合,从而影响动脉的直径、血流量和血压。

RFLSI ZW激光散斑血流成像系统基于LSCI(laser speckle contrast imaging)技术设计,具有非侵入性、高帧率、高分辨率的优势,用于实时监测和记录暴露组织器官的血流灌注情况。精准量化微循环血流量,满足广泛的科研场景。

本文介绍模拟慢性脑血流低灌注所致病理生理改变及认知障碍的啮齿类动物模型,包括大鼠双侧颈总动脉结扎和小鼠双侧颈总动脉狭窄模型。该模型可造成脱髓鞘改变、轴突丢失、胶质细胞增生等白质损伤的病理改变。

传统的微循环研究方法主要有“管腔分布走行及超微形态学观察”、“通透性评估”、“血管运动及调节”、“细胞培养法”等, 这些检测方式多为“离体静态检测”和“离体动态检测”。但是,目前离体检测存在一些缺点:离体状态的生理环境和各项指标会与活体状态有较大差距。样本通常需要处死并解剖,无法完成良好的自身对照控制个体间的差异。操作较为繁琐,降低实验效率。

生物和医学研究设计是在生物、医学和涉及人类其他类型研究中进行实验以及观察性研究的表述。一个好的实验设计能有效提高研究水平,节省科研人员的精力及时间。那如何才能完成一个优秀的生物和医学研究设计?来跟杨国源教授学!设计范例+研究经验+理论方法,帮你打造设计方法论,快速开展科研。

大脑的能量供应依赖其丰富而密集的血管系统。大脑的血管系统与其它器官不一样,它由神经血管单元(Neurovascular Unit,NVU)组成,而NVU由多种血管细胞(如内皮细胞、周细胞、平滑肌细胞、血管周围巨噬细胞)和大脑细胞(如星型胶质细胞、神经元)组成。

自2019年产品上市以来,瑞沃德激光散斑血流成像系统已被斯坦福大学、耶鲁大学、曼彻斯特大学、杜克大学、伦敦大学学院、塔斯马尼亚大学、首尔大学、埃森大学、首都医科大学、浙江大学、四川大学等全球200余所院校和研究机构采用 ,在 Nature Neuroscience、Gut、Brain、Blood、Circulation Research、Nano Today、Nature Communications、Advanced Function Materials 和 Diabetes 等杂志上发表了 200 多

MCAO线栓手术属于显微操作手术,不可控因素较多,需要多练习。一般常规连续练习3个月左右,即可实现造模;如果采用血流仪辅助造模,时间可以缩短至1个月,手术过程中可以实时调整线栓位置。另外现在发文越来越需要漂亮数据,瑞沃德的激光散斑血流仪RFLSI Ⅲ可提供高清漂亮血管血流分布图。

前往
在生命科学、动物健康和临床医疗领域提供可信赖的解决方案和服务,全力帮助客户取得成功